
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Professor Sophie Engle
Department of Computer Science

Stream Pipelines
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Java Stream Pipelines
2

● Initial stream source

● Zero or more intermediate operations
○ Lazily transform stream into another stream

● One terminal operation
○ Eagerly triggers the data processing
○ Produces a result or side effect and closes the

stream
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

https://www.cs.usfca.edu/
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

3

Pipeline Anatomy

https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

Data Sources Intermediate Ops Terminal Ops

Collection.stream()
Stream.of(…)
BufferedReader.lines()
CharSequence.chars()
IntStream.range(…)
Random.ints(…)
Stream.iterate(…)
Stream.generate(…)
…

filter(…)
map(…)
flatMap(…)
distinct()
sorted()
limit()
skip()
takeWhile(…)
…

forEach(…)
toArray()
reduce(…)
min(…)
collect(…)
count()
anyMatch(…)
findFirst()
…

https://www.cs.usfca.edu/
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

4

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

5

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

Lazy operations
● Executed when needed

Eager operations
● Executed immediately

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

6

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

Intermediate operations
● Always lazy
● Return a new stream

Terminal operations
● Usually eager
● Returns or has side effect
● Closes the stream

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

7

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

Stateless operations
● Don't depend on earlier action
● Ideal for λ-expressions

Stateful operations
● Depends on earlier action
● Bad for parallelism
○ e.g. distinct()

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

8

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

Intermediate short-circuiting op
● Produces a finite stream

from an infinite stream

Terminal short-circuiting op
● Terminates in finite time

given infinite input

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

9

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

● Ops should be non-interfering
and stateless for parallelism

● Interference occurs when
the source is unsafely modified
during execution

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

10

Operation Types
Lazy vs eager
Intermediate vs terminal
Stateless vs stateful
Short-circuiting
Non-interfering
With side-effects

● Side effects occur when ops
modify state outside scope
○ e.g. λ-expression modifying

a list outside its scope
● Terminal operations may have

side effects
○ Should still be avoided!

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Parallelism
11

● Pipelines without side-effects , that are non-interfering,
stateless, and unordered may be easily parallelized
○ Ordered streams (e.g. from lists) may have

non-deterministic results if parallelised

● Involves adding parallelStream() to pipeline
○ Often easier than multithreading explicitly

https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

https://www.cs.usfca.edu/
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

References
12

Package java.util.stream
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/
package-summary.html

The Java Tutorials – Lesson: Aggregate Operations
https://docs.oracle.com/javase/tutorial/collections/streams/index.html

“An introduction to the java.util.stream library” by Brian Goetz
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

https://www.cs.usfca.edu/
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/javase/tutorial/collections/streams/index.html
https://developer.ibm.com/articles/j-java-streams-1-brian-goetz/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

13

https://sjengle.cs.usfca.edu/

